Post-training intrahippocampal injection of synthetic poly-alpha-2,8-sialic acid-neural cell adhesion molecule mimetic peptide improves spatial long-term performance in mice.

نویسندگان

  • Cédrick Florian
  • Jane Foltz
  • Jean-Chrétien Norreel
  • Geneviève Rougon
  • Pascal Roullet
چکیده

Several data have shown that the neural cell adhesion molecule (NCAM) is necessary for long-term memory formation and might play a role in the structural reorganization of synapses. The NCAM, encoded by a single gene, is represented by several isoforms that differ with regard to their content of alpha-2,8-linked sialic acid residues (PSA) on their extracellular domain. The carbohydrate PSA is known to promote plasticity, and PSA-NCAM isoforms remain expressed in the CA3 region of the adult hippocampus. In the present study, we investigated the effect on spatial memory consolidation of a PSA gain of function by injecting a PSA mimetic peptide (termed pr2) into the dorsal hippocampus. Mice were subjected to massed training in the spatial version of the water maze. Five hours after the last training session, experimental mice received an injection of pr2, whereas control mice received PBS or reverse peptide injections in the hippocampal CA3 region. Memory retention was tested at different time intervals: 24 h, 1 wk, and 4 wk. The results showed that the post-training infusion of pr2 peptide significantly increases spatial performance whenever it was assessed after the training phase. By contrast, administration of the control reverse peptide did not affect retention performance. These findings provide evidence that (1) PSA-NCAM is involved in memory consolidation processes in the CA3 hippocampal region, and (2) PSA mimetic peptides can facilitate the formation of long-term spatial memory when injected during the memory consolidation phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of bilateral intrahippocampal injection of all–trans retinoic acid on spatial learning in adult male rats.

Introduction: Previous studies have shown that vitamin A and its derivatives such as retinoid and all-trans retinoic acid have a crucial role in memory, learning and synaptic plasticity. The receptors of vitamin A are seen in different parts of the brain such as hippocampus, where vitamin A has an important role in learning. In this study, the effect of intrahippocampal (CA1) injection of al...

متن کامل

A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation.

The neural cell adhesion molecule (NCAM) plays a critical role in development and plasticity of the nervous system and is involved in the mechanisms of learning and memory. Here, we show that intracerebroventricular administration of the FG loop (FGL), a synthetic 15 amino acid peptide corresponding to the binding site of NCAM for the fibroblast growth factor receptor 1 (FGFR1), immediately aft...

متن کامل

Characterization of tumor-associated neural cell adhesion molecule in human serum.

In human serum, at least two molecular species of the neural cell adhesion molecule (NCAM) with molecular weights of 110,000-130,000 and 150,000-180,000, respectively, can be identified by Western blotting. Both are characterized by the absence of epitopes for monoclonal antibodies KD11 and MG5, which specifically recognize intracellular domains of the human NCAM transmembrane isoforms, NCAM-14...

متن کامل

Reexpression of poly(sialic acid) units of the neural cell adhesion molecule in Wilms tumor.

A unique structural feature of the neural cell adhesion molecule N-CAM is the presence of homopolymers of alpha (2----8)-linked sialic acid units. We have used two specific probes for the detection of poly(sialic acid) in normal human kidney and Wilms tumor: a monoclonal antibody against meningococci group B capsular polysaccharide (homopolymers of alpha (2----8)-linked sialic acid units), whic...

متن کامل

Differential effects of unnatural sialic acids on the polysialylation of the neural cell adhesion molecule and neuronal behavior.

In this study we have examined how unnatural sialic acids can alter polysialic acid expression and influence the adhesive properties of the neural cell adhesion molecule (NCAM). Unnatural sialic acids are generated by metabolic conversion of synthetic N-acyl mannosamines and are typically incorporated into cell-surface glycoconjugates. However, N-butanoylmannosamine and N-pentanoylmannosamine a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Learning & memory

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2006